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Abstract. We have investigated the structure and growth kinetics of clusters formed in 
dilute solutions from two kinds of polyfunctional monomers. This was done by computer 
simulations within the framework of the cluster-cluster aggregation model with mass- 
independent cluster diffusion constants. The systems considered were of the type A,+ B, 
and A,+B,, where A,, A, and B, are different monomers. The monomer functionality f 
is equal to the coordination number of the lattice used in the simulations. The results of 
simulations obtained at different relative monomer concentrations are described and several 
novel effects are reported. Large clusters always have a fractal-like geometry but their 
effective fractal dimensionality, 0, appears to depend on the composition of the mixture. 
Only in a restricted composition range does the aggregation process lead to a single large 
cluster. There, the cluster size distribution function N,( f )  can be described by the scaling 
form ~ - ~ f (  s/ P ) .  Outside this range, aggregation results in small clusters (oligomers) whose 
structure is governed by ‘geometric selection rules’. Only certain non-consecutive oligomer 
weights are observed. The two boundary points of the interval in which kinetic scaling 
holds are shown to possess the properties of tricritical points. 

1. Introduction 

Considerable interest has recently been generated in non-equilibrium growth and 
aggregation models which simulate phenomena such as polymerisation and gelation, 
colloidal aggregation, dendrite formation and a variety of biological processes. Much 
of this interest was stimulated by the discovery of Witten and Sander (1981) that a 
simple diffusion-limited aggregation model in which particles are added one at a time 
via random walk trajectories to a growing cluster or aggregate of particles generates 
structures with a well defined fractal dimensionality ( D )  (Mandelbrot 1982), distinctly 
smaller than the Euclidean dimensionality ( d )  of the space or lattice used in the 
simulation. The work of Witten and Sander demonstrated that it may be possible to 
understand the tenuous fractal-like structures of many natural objects by analysing 
simple aggregation models. However, the Witten-Sander model is not a realistic 
representation of colloidal aggregation. A more realistic model incorporating both 
particle-particle and cluster-cluster addition processes as well as particle-cluster 
aggregation was recently introduced by Meakin (1983) and Kolb et al (1983). This 
model leads to structures which have a considerably smaller fractal dimensionality 
than those generated by the Witten-Sander model. The cluster-cluster aggregation 
model combines some of the features of both the Witten-Sander model and the earlier 
Sutherland and Goodarz-Nia (1971) model in which clusters are brought together via 
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linear rather than random walk trajectories. The cluster-cluster aggregation model 
leads to structures which closely resemble those observed in certain metal particle 
aggregates (Forrest and Witten 1979, Weitz and Oliveria 1984). In other cases, naturally 
occurring aggregation processes lead to structures with a somewhat higher fractal 
dimensionality than that found in computer simulations based on the cluster-cluster 
aggregation model. This may be the result of small sticking probabilities (Kolb and 
Jullien 1984) or other effects such as the reorganisation after the initial aggregation 
process which are now being investigated by computer simulation ( Meakin and Jullien 
1986). 

Initially, the interest in these aggregation models focused on the fractal geometry 
of the generated structures. More recently, attention has been directed towards the 
growth process itself (Racz and Plishke 1984, Meakin and Witten 1983) and, in 
particular, the kinetics of the growth process (Meakin er a1 1985b). Friedlander (1960, 
1977) and other workers in aerosol science (Lushikov 1973) and astronomy (Silk and 
White 1978) have pointed out that kinetic aggregating systems possess a scaling 
symmetry which involves the aggregation time and manifests itself by the existence of 
a characteristic cluster size growing as a power law in time. In these systems N,(r), 
the number of clusters of size s, at time r, can be expressed as 

N s ( t ) - s - 2 f ( s / r ’ )  (1) 

where f ( x )  is a scaling function and z is a scaling exponent. As a result, the concept 
of ‘self-preserving cluster size distributions’ has become a part of colloid science. For 
the case of cluster-cluster aggregation, scaling form (1) has been obtained by Botet 
and Jullien (1984) using Smoluchowski equations and by Vicsek and Family (1984) 
and Kolb (1984) who have shown that it describes the results of Monte Carlo simula- 
tions. The same scaling form has been found in other kinetic models (Kang and Redner 
1984). 

Work camed out during recent months (Deutsch and Meakin 1983, Botet and 
Jullien 1984) has shown how the scaling exponent z and scaling function f ( x )  are 
related to the fractal dimensionality D and the exponent y, the latter describing the 
dependence of the cluster diffusion coefficient D ( s )  on the cluster size ( D ( s )  - s y ) .  
In the cluster-cluster aggregation model y is treated as an independent parameter, 
though in real systems it must be related to the fractal dimension D (Meakin er a1 1985a). 

The kinetics of polymerisation reactions is a well established field (Flory 1953). 
However, it is only with the realisation that polymers are fractals that the effects of 
geometry on the kinetics of dilute polymerising systems has come to be fully appreciated. 
In the classical kinetic theory of polymerisation, the temporal evolution of the total 
number of reactive groups is calculated assuming that any reactive group is capable 
of reacting with any other appropriate reactive group anywhere in the solution. The 
location of a reactive group on the ‘surface’ or ‘interior’ of the growing molecule or 
cluster is believed to be irrelevant. This assumption of ‘equal reactivity’ of chemical 
groups is partially justified in dense solutions and melts but is an obvious over- 
simplification for the processes in dilute solutions where the average distance between 
clusters is comparable to or larger than the average radius of the clusters. For the case 
of two rigid fractal structures with the same fractal dimensionality, the equal reactivity 
assumption will be correct only if the two fractals are mutually transparent. The 
condition for mutual transparency (Ball and Witten 1983) is 

2 D + D , < d  
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where D, is the fractal dimensionality of the trajectory or walk describing the relative 
motion of the two clusters. D, has a value of 2 for diffusion (Brownian trajectory) 
and 1 for a linear trajectory and an effective value of 0 for a Brownian trajectory in 
the limit of low chemical reactivity or sticking probability. However, the inequality 
given in (2) is not satisfied by real two- or three-dimensional systems. For example, 
in three-dimensional cluster-cluster aggregation 2 0  = 3.5 and clusters are not trans- 
parent. This absence of transparency means that clusters collide through contact of 
their surfaces and their interiors are effectively screened. Consequently, we expect to 
find a very broad distribution of reactivities, varying from zero, for completely 
inaccessible interior groups, to very large values, for groups at very exposed locations. 
This broad distribution of reactivities is, in fact, essential for the formation of fractal 
structures in the first place. If all groups were equally reactive, the interior of the 
cluster would also grow and we would have a much denser structure. In principle, 
the equal reactivity assumption is inadequate whenever geometric (spatial) effects are 
important. Still, it is extensively used to predict the time dependence of observable 
quantities such as the number of clusters, their average mass and the number of ‘bonds’ 
formed in polymerisation processes. In general, this assumption leads to results quite 
different from those obtained from scaling theories which include the effects of geometry 
on the availability of reactive groups (Ziff er al 1982). The latter theories predict power 
law behaviour for the above mentioned observables as functions of the reaction time, 
in sharp contrast to linear or exponential functions typically predicted by the equal 
reactivity models. Most real systems lie somewhere between the extremes represented 
by the equal reactivity models and the cluster-cluster aggregation model. 

In this paper, we present results of the lattice cluster-cluster aggregation model 
with two types of monomers which automatically includes the effects of geometry on 
the availability of reactive sites. We will also show that, under certain conditions, 
the time-dependent cluster size distributions in this two-monomer model satisfy 
equation (1). 

Most of the results presented below are verified by all four types of system 
considered. In order to avoid being repetitious, each general statement is illustrated 
by one example on a specific system. 

2. Aggregation in two-monomer systems 

Almost all simulations of non-equilibrium growth and aggregations have been carried 
out under the assumption that all of the monomers are identical and, in the case of 
lattice model simulations, have a functionality equal to the coordination number of 
the lattice. In the off-lattice simulations of colloidal processes, it is usually assumed 
that the particles are hyperspherical and may stick at any contact point. Polymerisation 
reactions, however, frequently involve two monomeric species of the type A, and B, 
where g and f are the monomer functionalities. In contrast to single-monomer aggrega- 
tion, bonds ip A,+Bf systems are formed between the unlike chemical groups only. 

Practically all gel-forming polycondensation processes (Flory 1953) are of this latter 
kind, where one of the monomers is usually two-functional. Aggregation of antigen 
coated latex spheres and two-functional antibody molecules (von Schulthess et a1 1980) 
is an example of the A,+ Bf system with a very large value of J: Some biological 
processes such as the self-aggregation of proteins (Feder et al 1984), which are often 
presented as single-monomer aggregations, may also be regarded as examples of the 
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two-monomer systems, since the hydrogen ions which are invariably the mediators of 
the hydrogen bonds can be envisaged as A2 reagents. The aggregation in two and 
multicomponent mixtures is obviously of sufficient practical importance to warrant a 
detailed study. 

In a single-monomer B, system, the concentration of B, molecules is the only 
non-thermal parameter that controls the reaction rate. The presence of two independent 
concentrations in an A, + Bf system suggests that both the overall concentrations of 
two monomers and their relative concentration are important variables. This can be 
easily seen in the extreme case of polymerisation with the overabundance of one 
component. The reaction will rapidly produce clusters, the surface elements of which 
are predominantly of one type. Further collisions of these clusters will bring into 
contact only chemical groups of that one type and the reaction will terminate, irrespec- 
tive of the overall concentration of the two components. The marked imbalance of 
the chemical species therefore prevents the reaction from forming large molecules and 
that is why most polymerisations are performed at equal concentrations of reactive 
groups. This practice unfortunately leads to the belief that kinetic theories with a 
single reaction coordinate (Flory 1953) are sufficient to describe two-component sys- 
tems. Of course it is easier to construct the former theories and it is important to 
understand whether and under what conditions the two-component and the single- 
component systems exhibit the same physical behaviour. Also, the aggregation in the 
Az + B, systems resembles the site-bond percolation problem (Nakanishi and Reynolds 
1978, Kinzel and Yeomans 1981) where the A2 molecules serve as bonds between the 
B, branching sites. This correspondence needs to be examined and it should be seen 
whether the numerous results of percolation theory can be adapted to this particular 
class of aggregation processes. 

Another important aspect of these models is the possibility that the effective fractal 
dimensionality may depend on the relative concentration of the two components. If 
this is the case, the effective kinetic exponent, z, may also depend on the concentration 
ratio. 

In this paper we describe some of the results obtained from computer simulations. 
A companion paper (DjordjeviC and Meakin 1986) examines the same two-monomer 
models using the classical Flory-Stockmeyer approach. 

3. Computer model 

We performed simulations on a two-dimensional square lattice and a three-dimensional 
cubic lattice with periodic boundary conditions. In both dimensions, we considered 
two classes of monomer pairs: A, + B, and A2 + B,. Most real polymerisation processes 
leading to branched polymers and gels utilise A2 and B3, B4 or B, monomers. We 
believe that qualitative pictures will not change appreciably for different functionalities, 
J and present the most convenient models with f equal to the coordination number 
of the lattice, in d =2 ,  f=4 and in d = 3 ,  f=6. In all cases, the diffusivity of the 
clusters and monomers is taken to be mass independent. A more realistic model with 
a mass-dependent diffusion coefficient will be considered in future work. Also, we 
considered different initial concentration ratios. Most frequently, we refer to the relative 
proportion of the two species either by the number fraction of the A, component or 
by the ratio r of the number of chemical groups 

r = gA,/fS,. (3 )  
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Since we believed that the scaling form (1) of the cluster size distribution function 
applies to dilute aggregation systems, we worked with monomer concentrations in the 
range 0.2-1.5%. Further decrease in the concentration would cause serious degrada- 
tion in the statistical quality of the data or increase the computer time unreasonably. 

At the beginning of a simulation, a certain number of A, monomers is distributed 
randomly on the lattice and if they are of the A2 type, they are randomly oriented. 
Subsequently, a number of B, monomers corresponding to the desired ratio r are 
randomly placed among the vacant sites. At each step in the simulation a molecule 
is picked at random and moved by one lattice unit in a randomly chosen direction. 
Every movement of a molecule increments the reaction time by l /N(t) ,  where N ( t )  
is the number of molecules (monomers and polymers) on the lattice. Translational 
motion of an A, molecule is accompanied by a random rotation. Translation is the 
only allowed motion for clusters of two or more monomers. If two clusters make 
contact and a properly oriented A group on one cluster finds itself adjacent to a B 
group on the other, the two clusters permanently join. If two clusters make contact 
via an AB pair in which the A group is not correctly oriented for reaction, they are 
allowed to remain in contact but are not joined. If an attempted translation of a cluster 
would cause it to overlap one or more adjoining clusters, the attempted move is not 
permitted but the time is incremented by 1/ N (  t) ,  i.e. time is defined in units of attempted 
moves per cluster. Occasionally, more than one cluster will simultaneously come in 
contact. In this event all new contacts are examined for the monomer type and 
orientation, and 'bonds' are formed between all properly oriented contacting A and 
B groups. As the simulation proceeds, collisions between clusters result in the formation 
of larger clusters. The total number of clusters, No,  is continuously monitored. The 
weight average molecular weight S( t )  given by S( t )  = No'Z, s2Ns(  t ) ,  where No is the 
total number of monomers in the system, is also monitored. The cluster size distribution 
is established and stored for further analysis 100 times during the simulation. For 
convenience, both types of monomers are assumed to have equal mass. Clusters are 
characterised only by their total mass and not by the separate numbers of A, and B, 
monomers they contain. In order to obtain reasonably good statistics for the time- 
dependent cluster size distribution, it is necessary to average the results from a number 
of simulations (typically 5-50). 

4. Reaction rate as a function of composition field 

To illustrate the structure of the clusters obtained in two-monomer systems, the result 
of a small scale simulation on a 64 x 64 periodic lattice involving 500 particles with 
an equal proportion of PLq and B4 monomers is shown in figure 1. The clusters appear 
very ramified and resemble those obtained on the basis of simple cluster-cluster 
aggregation models. The & and B4 monomers are represented as black and white 
squares, respectively. Every edge of a square represents a functional group of the 
corresponding type. Note the checkerboard arrangement in which every square only 
has opposite nearest neighbours. 

In order to obtain an'improved picture of the fractal character of the aggregates, 
several large scale simulations on a 512 x 512 lattice with 8000 particles were performed. 
In figure 2( a )  we present the symmetric 50/50 case. Note the highly ramified structure. 
The two types of monomers cannot be distinguished on this scale. The result of another 
simulation with approximately twice as many B4 as PLq monomers is presented in figure 
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- 64 l o t t i ce  uni ts  - 
Figure 1. Small scale simulation of A,+ B, aggregation on a 64 x 64 square lattice with 
500 particles. The cluster is a fully grown ‘micro-gel’. The initial monomer ratio is 50/50. 

lbi I 

c--- 512 lattice units - - 512 lattice unl ts ____, 
Figure 2. ( a )  Final cluster in a large scale A4+B4 simulation on a 512x 512 square lattice 
with periodic boundary conditions and 8000 particles. The initial monomer ratio is 50/50. 
( b )  Result of the aggregation in an A,+B, system on a square 512x 512 periodic lattice 
with 8000 particles and an initial concentration ratio: 32.5/67.5. 

2( b) .  The aggregation process, up to the point presented in this picture, proceeded 
for 8 h CPU time on an IBM 3081 computer. This is approximately 10 times longer 
than for the process in figure 2(a).  However, the system is not fully aggregated and 
beside the one large cluster, three small clusters are visible. The test of whether this 
particular configuration would ever completely aggregate would require considerable 
computer time and was not attempted. A comparison of two large clusters of figures 
2(a)  and 2(b) shows the ‘considerably’ higher compactness of the latter. 

The chemical composition of the mixture clearly influences the reaction rate and, 
at least in the case of A.,+ B4 systems, asymmetry in the composition slows the reaction 
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down. To investigate this observation in a more quantitative manner, simulations have 
been carried out at different relative monomer concentrations using all four models. 
If a particular mixture fully aggregates into a single large cluster we call it a ‘gelling 
mixture’. A composition which does not result in a single cluster after a ‘long’ 
aggregation time is classified as ‘non-gelling’. We have chosen an arbitrary value, 
S = 100 monomer masses, and recorded the reaction time at which the weight average 
molecular weight reaches that value. Plots of the reaction time against composition 
for all four models are given in figure 3. These curves are similar to the gelation curves 
of our companion paper (DjordjeviC and Meakin 1986) where we calculated gelation 
time as a function of the ratio r. The physical implications of the gelation diagrams 
and figure 3 of this paper are practically the same. 

Figure 3 shows that optimal compositions exist at which the reactions proceed most 
rapidly. In the case of A,+B, systems these compositions are naturally placed at 
X = 50%. What is particularly interesting is that the optimal compositions in the 
AZ+ B, mixtures do not coincide with the equivalent compositions ( r  = 1) which have 
the same number of A and B chemical groups. The equivalent compositions in the 
case of A,+ B, and A2 + Bb systems contain 66% and 75% of A2 monomers respectively. 
However, the optima in our simulations are considerably below these values. 
Apparently, the intuitive assumption that the A, + B, system polymerisation ( g  Zf) is 

jcA,+B, 

4000 1 I ;  
3000- 

I 

0 
0 
2 
c W 

+ 
2000- 

1000- 

I 
02 0 4  0 6  08 

Fraction of A ,  

Figure 3. Reaction time necessary for systems of 10 000 A, and Bf monomers on an 
appropriate two- or three-dimensional lattice to reach a mean cluster size S =  100 as a 
function of the fraction of A, monomers. S is the weight average molecular weight in 
units of monomer mass. The results were obtained by averaging over a number of 
simulations. The reader should note that the data for Af+Bf systems will not appear 
symmetric around the X = 0.5 axis, if presented as functions of ratio r. 
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optimised if the two chemical groups are equally numerous is not supported by our 
simulations. The same conclusion may be drawn from our classical theory of these 
phenomena (DjordjeviC and Meakin 1986). 

Results of our simulations indicate not only that the reaction time increases as we 
change the composition away from the optimal but also that it diverges at two finite 
values: Xmi,( rmin) and X,,,,,( rmax).  This is in full agreement with the previous theoretical 
results (DjordjeviC 1984). Here we performed only a partial analysis of these divergen- 
cies, deeming it more important to present the complete phenomenology of the 
processes first. 

5. Existence of kinetic scaling in two-monomer systems 

The existence of scaling in kinetic aggregation processes has attracted considerable 
interest (Vicsek and Family 1984, Botet and Jullien 1984) recently and it is natural 
to examine the effects of the presence of two monomers on this scaling. We are aware 
that scaling behaviour can be influenced by the value of the diffusion constant exponent 
y but in this paper we did not attempt simulations with values of y other than zero. 
Also, as we are not simulating any particular chemical reaction, we have assigned the 
same mass to both monomers. The molecular weight of a particular polymeric molecule 
is then equal to the number of monomers of either type. 

The cluster size distribution function Ns(  t )  for a two-dimensional &+ B, system 
with a 50/50 monomer ratio is presented as a In( Ns( t ) )  against In( t )  plot of figure 4. 
Examining it from top to bottom, we see the time evolution of the number of monomers, 
dimers, trimers, etc. If the function N s ( t )  assumes the scaling form ~ - ~ f ( s / t ' )  then 
quantity s 2 N s ( t ) ,  when plotted against x = s / t L ,  should (for different times t )  follow 
the universal curve, f ( x ) .  A result of this reduction of data is presented in figure 5 
for six consecutive times t. The data are collapsed by adjusting the scaling exponent 
z to the value z = 1.3. The slight dispersion of the curves apparent in figure 5 is a 
natural consequence of the limitations inherent in the simulation methods and does 
not necessarily indicate inadequacy of the scaling form. It is interesting to note that 
the same value of exponent z is obtained in the cluster-cluster aggregation model with 
one monomer and diffusivity exponent y = 0 (Meakin et al 1985b). Another confirma- 
tion of the applicability of the above scaling form is given in figure 6, where we present 

In r--- 

0 1 2 3 4 5 6 1 8 9  
I n V )  

Figure 4. Time evolution of the number of small clusters of sizes 1-10, during simulations 
camed out on a 512x512  lattice with 10000 particles in a ZD 50% A,+50% B, system 
with symmetric monomer composition. D ( s )  -so. 
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i 

Figure 5. Reduction of the cluster size distribution function N,( 1 )  to the universal scaling 
function f ( s / t z )  for a symmetric ZD (50% A4+50% B4) system. Each curve corresponds 
to a particular time t. Collapse of data is better for higher reaction times. The curve with 
the lowest time presented, t = 64.9, deviates from the rest of the data. 

a 

6 - - 
+. 
2 4  
c - 

2 

0 

-2  
0 1 2 3 4 5 6 

Inlsl 

Figure 6. Cluster size distribution function N,(r) as a function of s at different reaction 
times t for 2~ 50% A4+ 50% B4. Note the slope of the envelope of these curves which is 
equal to -2. This is a confirmation that N , ( t )  possesses a scaling form: N,(  t )  - sY2f(s/fZ). 

ln(N,(t)) as a function of ln(s) for several values of t. The envelope of this set of 
curves follows a straight line with a slope of - 2 .  For every t, labelling one of these 
curves, we may choose a point on the curve with a value of s such that s / t Z  is equal 
to a prescribed constant y. A value of N , ( t )  equal to s - * f ( y )  corresponds to every 
such point. Since f(y) is a constant, all these points, in a double logarithmic diagram 
in figure 6, must lie on a straight line with a slope of -2 .  The envelope of the curves 
in figure 6 is just one such set of points. 

The scaling for N,( t )  implies that colligative properties such as the mean number 
of clusters or mean molecular weight of clusters grow as powers of time t. In figure 
7 we present a double logarithmic plot of the mean number of clusters N as a function 
of time t obtained from a three-dimensional system with 80% A2 and 20% B6 molecules. 
After an initial ‘crossover’ period, the curve approaches a straight line, i.e. the mean 
number of clusters N falls as a power of the reaction time. Similar behaviour is 
observed in figure 8 where we present the second moment of the cluster size distribution 
S( t ) ,  which is proportional to the weight average molecular mass of the clusters. Again, 
the function approaches a straight line, the slope of which in the In-ln plot equals the 
scaling exponent z = 2.5. Due to finite-size effects, both of the last two curves will 
flatten into horizontal lines with values N = 1 and S = No respectively, where No is 
the number of particles in the system. This happens immediately after the region 
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5 t  , 1 , I , I 1 

In It) 
0 2 4 6 0 

Figure 7. Mean number of clusters as a function of reaction time in a 3D 80% A, + 20% B, 
system. At large times function N (  1 )  becomes a straight line on this In-In plot, indicating 
a power law behaviour. These and other three-dimensional simulations are carried out 
using a total of IO 000 monomers on a 1 2 8 ~  lattice. 

9 1 ' "  I , 1 

r 

3 'I- 
0 2 4 6 8 

h ( t i  

Figure 8. Weight average molecular weight S( t )  = P, s2Ns(  t ) / X s  sN$( t )  obtained for a 
three-dimensional 3D 80% A,+20% B, system. After an initial non-scaling region, S( t )  
grows as a power of t .  

0 2 L 6 8 
In ( t )  

Figure 9. Time evolution of the number of clusters in a 3D 50% &+50% B, system of 
symmetric composition. 
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- 2 2  -20 - 18 -16 -14 -12 -1 0 
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Figure 10. The results of an attempt to scale the cluster size distribution functions obtained 
at various times in simulations of a three-dimensional 50% &+ 50% B, system. The best 
collapse of the data into a single curve is obtained with an exponent z of close to 3.0. 

t 
7 t  

t 

i n l t i  

Figure 11. Time dependence of the weight average molecular weight obtained from the 
three-dimensional simulations of a 3D 50% &+ 50% B, system at equal concentrations of 
the two monomers. The results are deduced from the data presented in figure 10. 

presented in these graphs. Other graphs in which this finite-size effect is clearly visible 
are presented in figure 13 below. 

In figure 9, we present the time evolution of several cluster sizes in a three- 
dimensional &+B6 system with equal amounts of two monomers. The result of the 
collapse of data as presented in figure 10 is unfortunately not very convincing. The 
closest we can come to a full collapse is achieved with the value of z = 3.0. A partial 
explanation of the difficulties can be inferred from the plot of the second moment of 
the cluster size distribution given in figure 11. The curvature of this graph is very 
pronounced and it is impossible to determine the scaling region. From our experience 
with single-component systems (Meakin et al1985b), we know that this is a consequence 
of finite concentration effects which are very pronounced in systems with diffusivity 
exponent y > 0. We expect that the scaling form for Ns( t )  will be applicable with 
much greater accuracy in systems with y < 0. 

6. Tricriticality and the role of the composition field 

We have already shown that changes in the composition of the initial monomer mixture 
influence the kinetics of polymerisation. Going back to figure 2, we see that, besides 
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strongly affecting the reaction rate, the composition affects the structure of the clusters 
as well. In this particular example, clusters formed in the asymmetric mixture (figure 
2(b)) appear more compact than the cluster formed in the symmetric mixture (figure 
2( a) ) .  To quantify these observations we have analysed the fractal structure of aggre- 
gates obtained at two different compositions: 50150 and 35/65 of an &+B4 system. 
The effective fractal dimension D is determined by two independent methods. These 
effective dimensionalities are obtained from the geometric scaling relationships 

In equation (4), R , ( s )  is the radius of gyration of polymers of mass s. In equation 
(9, C ( R )  is the two-point density-density correlation function, R is the distance and 
d is the ordinary, Euclidean, dimensionality of the lattice in which the system is 
embedded. 

In both cases, five simulations were carried out using 8000 particles on 512 x 512 
lattices. The results are presented in figure 12 and table 1, respectively. Both methods 
of measurement of the fractal dimension give results which agree within the given 
error limits. Here and throughout this paper the error limits are the 95% confidence 
range and only include the contribution of statistical uncertainties. Systematic errors 
may be larger. The asymmetric aggregates have a fractal dimension D = 1.53 f 0.05 
which is higher than the fractal dimension D = 1.46 f 0.02 of the symmetric aggregates. 
This implies that the effective fractal dimension of clusters depends on the composition 
of the monomer mixture. To examine the dependence of the kinetic exponent z on 
the initial monomer composition we recorded the time evolution of the second moment, 
S ( t ) ,  for five different compositions of an & + B 4  system. The results are presented 
in figure 13 and the differences in slopes of the five curves presented are rather obvious. 
The early time portions of these curves do not belong to the scaling region. Also, the 
tails of the curves are influenced by the 'saturation' effects near the gelation boundary 
and do not belong to the scaling regions either. The average slopes of these curves 
are determined in the log(s) region between 3 and 6 units of scale. The resulting 
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Figure 12. Double logarithmic plot of density-density correlation function C( R )  for A,+ B, 
aggregates as a function of the logarithm of distance R. The slope of the curve is equal 
to the exponent --(I = - ( d  - De), where d is the Euclidean dimensionalityofthe embedding 
lattice; in this case d = 2, and 0, is the fractal dimension of the aggregates. We estimate 
the fractal dimensionalities to be close to 1.44 for 50% A+ 50% B and 1.51 for 35% A+ 
65% B system. 



Cluster- cluster aggregation in two-monomer systems 2149 

Table 1. Radius of gyration exponents ( p )  and effective dimensionalities D,(D, = l / p )  
obtained from simulations carried out using the two-dimensional A,+ B, model. This was 
obtained by least-squares fitting straight lines to the coordinates (ln(Rg), ln(s)) where R,  
is the radius of gyration and s is the size of the cluster. Clusters in the size range sI < s < s2 
were used. 

SI 7 7 50 25 
s2 250 5000 5000 2500 

p0.684i0.012 0.680iO0.O07 0.673i0.010 0.674i0.004 50% A+50% B 
0, 1.46 i 0.03 1.47 f 0.02 1.49 i 0.02 1.48*0.01 

p 0.665 *0.008 0.662 * 0.009 0.652 i0 .024 0.658 *0.083 
35% A+65% B 

Dp 1.50 * 0.02 1.51 *0.02 1.53k0.05 1.52 i 0.17 

numbers, representing the effective exponent z as a function of the composition field, 
are shown in figure 14. The reader should take note both of the fact that the effective 
exponent z changes with the composition of the mixture and of the functional form 
of that change. 

After an initial period, any aggregating system of a composition close to the optimal 
contains very few if any free monomers. All that is left are clusters of at least several 
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Figure 13. Temporal evolution of the weight average molecular weight S (  1 )  in ZD A,+ B, 
systems of five different compositions indicated by the percentage ratios of A, and B, 
monomers. 
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Figure 14. Variation of the effective exponent z with the change of composition of the 
mixture ZD A,+B,. The broken line is the expected behaviour. The position of the edge 
of the step is not known precisely. 
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monomers. At that ‘advanced’ stage of aggregation, systems practically ‘forget’ that 
they contain two types of monomers and behave as single-component systems with a 
sticking probability smaller than one. This is an important conclusion because it allows 
us to understand why the scaling laws introduced for single-component systems apply 
to two-component systems. 

The recent work of Meakin and Wasserman (1984) demonstrates that a change of 
sticking probability does not affect the fractal dimension of the aggregates in the 
cluster-cluster aggregation processes and small sticking probabilities only lead to more 
compact structures on the small length scales. Large clusters cannot penetrate each 
other and an increased number of collisions has little effect on the cluster structure 
on the longer length scales. Again because clusters cannot penetrate each other (Meakin 
1984), the fractal dimension of the cluster trajectory has only a very small effect on 
the fractal character of the cluster-cluster aggregates. The value ( D  = 1.53 * 0.05) we 
obtain for the effective fractal dimensionality of the two-dimensional 35% &+65% B4 
system is quite similar to that obtained recently by Botet and Jullien (1984) from a 
cluster-cluster aggregation model in the limit of zero sticking probability. 

In general, we expect to find a crossover from the fractal dimensionality characteris- 
tic of cluster-cluster aggregation with zero sticking probability (Botet and Jullien 1984) 
( D  = 1.55 for d = 2 and D = 2.0 for d = 3), on the short length scales, to that characteris- 
tic of cluster-cluster aggregation with a large sticking probability ( D  = 1.43 for d = 2 
and D = 1.75 for d = 3), on the longer length scales. 

If the fractal dimensionality D were independent of the sticking probability p ,  the 
time exponent z should be independent as well. The results shown in figure 14 support 
this conclusion. To appreciate this one should note that the curve z(x) is very flat for 
small deviations from the symmetric composition and changes rather abruptly towards 
the end of the gelation region. The same dependence of an effective exponent as a 
function of an ‘irrelevant’ field is observed whenever we have a crossover from the 
critical to tricritical behaviour (Riedel and Wegner 1972). If our measurements of 
exponent z were made at ‘infinite’ aggregation times in very large systems, the resulting 
exponents would be the same for all compositions within the gelation region and would 
take on a different value only at the boundary composition. The necessity that a scaling 
field (in this case composition X )  takes a precisely selected value, in order that a 
certain new type of critical behaviour occurs, is an essential feature of the tricritical 
point. The fact that we observe a smoothly varying curve instead of a step function 
is the consequence of the finite observation time which is in our simulations directly 
related to the finite size of the system. 

7. Non-gelling region and oligomer formation 

At compositions in the gelation region, aggregation always results in the formation of 
a single large cluster. Beyond that region, several or many clusters are formed. The 
boundaries of the gelation region therefore delineate two very different types of physical 
behaviour. To illustrate this difference we have presented in figure 15 the temporal 
evolution of the N,( t )  cluster numbers of a non-gelling 30% A2 + 70% B, system. These 
curves should be compared with the results for a gelling mixture given in figure 9. 
Apparently in a mixture with an overabundance of one kind of monomer, the time 
evolution of the cluster sizes is characterised by the appearance of the stable small 
clusters, oligomers. The selection of the surviving cluster sizes reflects the functionality 
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Figure 15. Time dependence of the cluster numbers of 3D 85% &+ 15% B, system with 
a majority of & monomers. Cluster sizes 1, 7, 12 and 13 are saturation points of the 
distribution. 
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Figure 16. Shapes of the small clusters saturated with & monomers of a 3D &+ B, mixture. 
Both white and shaded squares are projections of the corresponding three-dimensional 
cubes representing the six functional monomers. 

of monomers and the geometry of the underlying lattice. As an illustration of the 
oligomers selected by these geometric rules we present in figure 16 the smallest clusters 
which can be obtained in an &+B6 mixture saturated with & monomers. 

A very similar situation takes place in any of the non-gelling regions of all other 
types of monomer mixtures considered. The relevance of these observations for the 
real polymer systems will be discussed elsewhere. 

8. Discussion 

In this paper we have presented some of the results obtained from a new model for 
polymerisation of multifunctional monomers. Our model automatically includes the 
same sort of complex geometric effects that are found in real systems. However, the 
details of these goemetric effects are to some extent dictated by the lattices used in 
our simulations. Off -lattice simulations should be possible but would require very long 
computer times and would be relatively difficult to program. In its present form, our 
model assumes that the aggregation kinetics are diffusion limited. It would be easy 
to include the effects of finite reactivity via sticking probabilities for A-B interactions, 
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but again much longer computer times would be required. It should also be easy to 
extend our model to the aggregation of monomers with mixed functional groups of 
the A,B, type. These simulations are in progress. 

One of the major deficiencies of our model which makes it unrealistic for many 
real systems is that we assume that the clusters, once formed, are completely rigid. 
We have begun to explore the effects of the structural readjustments after two clusters 
have contacted each other (Meakin and Jullien 1986) but we still have a long way to 
go before completely realistic models are available. 

Our models produce many of the qualitative features associated with condensation 
polymerisation in real systems formed from polyfunctional monomers. In particular, 
we observe the existence of gelling and non-gelling regions of compositions and suggest 
that the boundaries between these regions are tricritical points. 

The formation of stable oligomeric structures in the non-gelling region is a novel 
feature which is not present in the single-monomer cluster-cluster aggregation model. 
Perhaps one of the most important results of our work is the observation that polymeri- 
sation kinetics in the gelling region can be described in terms of the same sort of 
scaling behaviour as that found recently in cluster-cluster aggregation (Meakin et a1 
1985b, Botet and Jullien 1984) and previously for other systems (Friedlander 1960, 
1977, Lushnikov 1973, Silk and White 1978). The dynamic scaling form N , ( t )  = 
s-'f( s/ t ') appears to be quite general and applicable to a very wide range of aggregation 
and polymerisation processes. It is most likely that modifications of our model such 
as the inclusion of finite sticking probabijities and internal reorganisation processes 
will change the scaling exponent z and the scaling functionf(x). However, the general 
scaling form will probably be preserved. This suggests that attempts should be made 
to apply the above scaling form to experimental systems as well as to other simulations. 
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